Spectrometer-Matched Vertex Detector

Craig Ogilvie for the PHENIX Collaboration

- B Physics highlights
- Strawman plan of possible detector
- B Proof-of-principle simulations
- B Technology options

Spin Structure Function of Proton

- Broad range of observables => low-x and large-x
- β Vertex detector adds p+p => \overline{cc} =>eX p+p => \overline{bb} =>e μX

2 displaced vertices e, μ b-tags

Explores production mechanism for variety of channels, global fit, how much spin does the glue carry

pp => Charm, Bottom Production

- Unique data on heavy-flavor production in this energy range
- B Provides two baselines
 - empirical for comparison with AA data
 - theoretical
 - » do we understand heavy-flavor production in QCD
 - » beyond leading-order gluon fusion

pA Charm, Bottom Production

- ß Reaction mechanism of heavy-flavor, e.g. initial state scattering
- B Towards extracting gluon structure function nuclei, shadowing
 - consistency of several observables
- ß At very low-x, possibility of gluon saturation

Vertex detector adds

$$p+A => cc => eX$$

$$p+A => \overline{b}b => e\mu X$$

AA Charm, Bottom Production

- Is charm enhanced by production in the earliest, densest stage of the reaction?
 - pre-equilibrium charm production
- B How do high-pt heavy-quarks lose energy in the plasma?
 - does the mass of the parton affect the medium-induced gluon radiation?
- B Measure both the pt spectra and yield of open charm, bottom
 - pp, pA and AA
 - » AA centrality and species dependence

Spectrometer-Matched Vertex Detector

- ß Match tracks, displaced vertices to PHENIX spectrometer arms
 - electron PID, muon tracking/PID

Strawman Detector Principles (numbers next)

Performance requires accurate projection to collision vertex => close, thin detector

Strawman Detector

Each Si layer, 1% radiation length {detector, cooling, support}

GEANT

- * pixel barrels
- * strip barrels
- * pixel disks

endcap, pixels 4 circular disks z=16, 23, 30, 37cm 1.2 < |η| < 2.4

- ß Barrel r = 2.5, 6, 8, 10 cm, $-1.2 < \eta < 1.2$
 - inner two layers, Si pixels
 - outer two layers, Si strips

Matching to Muon Arms

- Match tracklets in Si to muon spectrometer
 - cut on same charge
 - momentum similar to 50% before/after muon shielding
 - match hit within 3σ on first tracking layer

Signal/Background Muons from Charm

- β p+p simulations (in progress)
 - tracklets matched to muon spectrometer
 - DCA resolution to collision vertex ~ 100μm
 - identify displaced decays, candidate μ from D, B
 - $-D => \mu + X$
 - » confirm by having displaced track (X) in coincidence
 - upper cut on decay removes long-lived pion decays
 - (μ from D)/(μ from π)
 - > S/B > 1 for pt > 0.5 GeV/c
 - will enable measurement of spectra of open charm

Central Arm: Electrons from D decay (Au+Au Simulations)

Nov 2001

- Without cuts on displaced vertex
 - S/B \sim 1 for high-pt
 - S/B \sim 0.1 pt=0.5 GeV/c

Distance of Closest Approach

50μm x 425μm pixels, full multiple scattering dca resolution (electrons) < 50 μm less than $c\tau$, D^0 : 125μm D^{\pm} : 317 μm

Signal/Background With DCA Cut

- ß S/B from 2 to 10 => sample largely e from D-decay
 - large momentum range => spectra and yields of D

Hadronic Decays of D

- Construct invariant mass => extract counts => spectra
 - multiple scattering, slow hadrons, makes this very tough

D⁺ => K⁻ π ⁺ π ⁺ (BR 9%) full multiple-scattering three displaced tracks, parent points to collision

ß Provides 2nd measure of D spectra, consistency with D=>e+X

Other Physics

- B Large solid angle => "jet" axis reconstruction in pp, pA
 - photon+jet
- B Rejection of Dalitz and conversion e+e- pairs
 - cut on small e⁺e⁻ opening angle, small invariant mass
 - improve S/B near low-mass vector meson, ρ, φ
- β Strange baryons, Λ , Ξ , Ω
 - confirm by-then-existing STAR results
- Better angle measurement for $\mu+\mu$ pairs
 - improved mass resolution for all vector mesons
 J/ψ, ψ'
- ß Reduction of $\pi=>\mu$ background
 - increase S/B for Upsilon, Upsilon spectroscopy
 - Displaced J/ ψ => B-yields in AA, rates ?

Technology Options

- **B** Si Pixel: hybrid
 - RIKEN and PHENIX collaborators joined NA60/ALICE
 1st round of production
 - gain experience, explore matching readout to PHENIX
- **B** Si Pixel: monolithic
 - Iowa State effort with Electrical Engineering Dept
 - » modify commercial APS designs
 - » readout speed?, thick epitaxial layer?
- ß Si "Pads": BNL (Zheng Li) 100μm*1mm, wire bonded
- **B** Strips: no problems foreseen

Vital Statistics

- β Total silicon surface area = 1.4 m²
- Barrel pixels 5M
- **Barrel strips 50K**
- ß Endcap pixels ~ 12M
- ß Requires zero suppression
- B Two estimates of data volume per central event
 - hit channels (real+background) => 80K channels
 - 97% zero suppression => 500K channels
- B No discussion yet on trigger possibilities

Strawman Schedule

- B Considering a staged schedule
 - support/cooling for full barrel/endcap
 - instrument outer two barrel layers with Si-strip (2004-05?)
 - instrument inner layers/endcaps with pixels (2005-06?)
- ß Enables spin, pp, pA program early
- B Parallel tasks implies challenges for manpower, \$\$
 - R&D on Si pixel options
 - implementing Si strips

R&D effort

- ß LANL LDRD Funds, 250K / year next 3 years,
 - detector design, optimization
 - evolve to pixel studies
- **B** RIKEN /Suny SB
 - NA60/ALICE hybrid pixel participation (2 people 2002)
 - adapt for PHENIX needs
 - Si strip/pads with BNL
- **B** Iowa State
 - monolithic APS design/fabrication
- B BNL
 - sparse readout

Summary

- B Physics case for spectrometer-matched vertex tracker
 - gluon spin structure function from low-x to large-x
 - gluon shadowing in nuclei
 - charm enhancement in early-stage of heavy-ion collision
 - energy-loss of high-pt heavy quarks
- Measure spectra broad pt range, yield of open charm, bottom
 - pp, pA, and AA collisions
- ß Strawman detector simulations
 - displaced muons (res. 100 μ) match to muon-spectrometer
 - electron DCA resolution (50 μ) < $c\tau$ for D decay
 - D => $K\pi\pi$ promising
- ß Explore technology options, simulate performance